The Computational Complexity of Convex Bodies

نویسندگان

  • Alexander Barvinok
  • Ellen Veomett
چکیده

We discuss how well a given convex body B in a real d-dimensional vector space V can be approximated by a set X for which the membership question: “given an x ∈ V , does x belong to X?” can be answered efficiently (in time polynomial in d). We discuss approximations of a convex body by an ellipsoid, by an algebraic hypersurface, by a projection of a polytope with a controlled number of facets, and by a section of the cone of positive semidefinite quadratic forms. We illustrate some of the results on the Traveling Salesman Polytope, an example of a complicated convex body studied in combinatorial optimization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sweep Line Algorithm for Convex Hull Revisited

Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...

متن کامل

Realization Spaces of Arrangements of Convex Bodies

We introduce combinatorial types of arrangements of convex bodies, extending order types of point sets to arrangements of convex bodies, and study their realization spaces. Our main results witness a trade-off between the combinatorial complexity of the bodies and the topological complexity of their realization space. On one hand, we show that every combinatorial type can be realized by an arra...

متن کامل

A new quadratic deviation of fuzzy random variable and its application to portfolio optimization

The aim of this paper is to propose a convex risk measure in the framework of fuzzy random theory and verify its advantage over the conventional variance approach. For this purpose, this paper defines the quadratic deviation (QD) of fuzzy random variable as the mathematical expectation of QDs of fuzzy variables. As a result, the new risk criterion essentially describes the variation of a fuzzy ...

متن کامل

On the Complexity of the Set of Unconditional Convex Bodies

We show that for any 1 ≤ t ≤ c̃n log−5/2 n, the set of unconditional convex bodies in R contains a t-separated subset of cardinality at least exp ( exp ( c t2 log(1 + t) n )) . This implies the existence of an unconditional convex body in R which cannot be approximated within the distance d by a projection of a polytope with N faces unless N ≥ exp(c(d)n). We also show that for t ≥ 2, the cardina...

متن کامل

36 Computational Convexity

The subject of Computational Convexity draws its methods from discrete mathematics and convex geometry, and many of its problems from operations research, computer science, data analysis, physics, material science, and other applied areas. In essence, it is the study of the computational and algorithmic aspects of high-dimensional convex sets (especially polytopes), with a view to applying the ...

متن کامل

Approximating the Volume of Convex Bodies

It is a well known fact that for every polynomial time algorithm which gives an upper bound V (K) and a lower bound V (K) for the volume of a convex set K ⊂ E, the ratio V (K)/V (K) is at least (cd/ log d). Here we describe an algorithm which gives for ǫ > 0 in polynomial time an upper and lower bound with the property V (K)/V (K) ≤ d!(1 + ǫ).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006